Tuesday, April 1, 2014

Transformations

                                                      
                             
                                 http://www.mathplayground.com/ShapeMods/ShapeMods.html

Sunday, March 30, 2014

Compound Interest

Formula:


P = principal amount (the initial amount you borrow or deposit)
r  = annual rate of interest (as a decimal)
t  = number of years the amount is deposited or borrowed for.
A = amount of money accumulated after n years, including interest.
n  =  number of times the interest is compounded per year 


Example
An amount of $1,500.00 is deposited in a bank paying an annual interest rate of 4.3%, compounded quarterly. What is the balance after 6 years?
                                                                           Solution
Using the compound interest formula, we have that
P = 1500, r = 4.3/100 = 0.043, n = 4, t = 6. Therefore,
Example Solution
So, the balance after 6 years is approximately $1,938.84.

Thursday, March 20, 2014

Liner Programming

<<<Image Goes Here>>>
Vertices:

(0,6)
(0,0)
(6,0)




Constraints
Objective Function: 
x ≥ 0
y ≥ 0
x + y ≤ 6


C + 3x = 4y


<<<Image Goes Here>>>
Vertices:
(0,6)
(-5,4)
(0,4)




Constraints
Objective Function: 
x ≤ 5
y ≥ 4
-2x + 5y ≤ 30


C = 2x + 5y



<<<Image Goes Here>>>
Vertices:
(1,8)
(1,2)
(5,2)




Constraints
Objective Function: 
x ≥ 0
y ≥ 0
x + y ≤ 5

 C + 7x + 3y




<<<Image Goes Here>>>
Vertices:
(0,8)
(0,4)
(6,8)




Constraints
Objective Function: 
x ≥ 0
y ≥ 8
-2x +3 y ≤ 12

 C = 4x + 6y




<<<Image Goes Here>>>
Vertices:
(0,5)
(0,4)
(2,3)

 


Constraints
Objective Function: 
x ≥ 0
y ≥ 0
4x +4 y ≤ 20
x + 2y ≤ 8

 C = 8x + 7y




<<<Image Goes Here>>>
Vertices:
(0,4)
(0,2)
(3,0)
(4,3)





Constraints
Objective Function: 
x ≥ 0
2x + 3y ≥ 6
3x - y ≤ 9
x +4 y ≤ 16

 C = 3x + 5y




Tuesday, March 4, 2014

Graphing Exponential Growth/Decay

Graphing Exponential Growth/Decay



  •  Formula: y=a*bx-h+k

  • a= multiplier (greater than, vertical stretch, if a is in between o & l it"s a vertical compression, if it gets flipped)
  • b= base (either a number between o &1 or greater than 1)
  • h= left/right  (up)
  • k= up/down
  • domain= (
  • asmtope= (y=k) r+ range y<k when a s negative & y > k when a is positive
 Negative exponents mean to FLIP A FRACTION






Tuesday, January 21, 2014

Characteristics and Traits of Graphs

Domain - Determine how far left & right the graph goes

Range - Determines how far up & down the graph goes


End Behavior - Describes the 2 ends of an equation

Absolute Max/Min - point that highest/lowest on the graph

Local Max/Min -More than one point that is the highest or lowest 

Interval of increase - point where it increases the x axis

Interval of decrease - section of graphs when y values are decreasing

X intercept - point where it crosses the x axis

Y intercept - point where it crosses the y axis

Symmetry - even: symmetric at y axis
                  odd: symmetric at orgion 
             neither: no symmetry

Asymptotes - imaginary line closer & closer to the line but never touches it

Function - passes vertical line test

This is an example of a line failing the vertical line test so...
NOT A FUNCTION!

 One to One - passes vertical & horizontal line test